Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ТФ

А.В. Сорокин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.О.21** «**Теоретическая механика**»

Код и наименование направления подготовки (специальности): 23.03.02

Наземные транспортно-технологические комплексы

Направленность (профиль, специализация): Проектирование колесных и

гусеничных машин

Статус дисциплины: обязательная часть

Форма обучения: заочная

Должность	И.О. Фамилия
доцент	И.В. Курсов
Зав. кафедрой «НТС»	Г.Ю. Ястребов
руководитель направленности	И.В. Курсов
	доцент Зав. кафедрой «НТС»

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы	ОПК-1.1	Применяет математический аппарат, методы математического анализа и моделирования для решения задач профессиональной деятельности
	математического анализа и моделирования в профессиональной деятельности	ОПК-1.2	Применяет естественнонаучные и/или общеинженерные знания для решения задач профессиональной деятельности

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Математика для инженерных расчетов, Физика в
предшествующие	изучению	машиностроении
дисциплины,	результаты	
освоения которых	необходимы	
для освоения	данной	
дисциплины.		
Дисциплины (прак которых результать данной дисципли необходимы, ка знания, умения и влих изучения.	ны будут к входные	Детали машин и основы конструирования, Сопротивление материалов, Теория механизмов и машин

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 6 / 216

		Объем контактной			
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	12	0	12	192	31

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 3

Объем дисциплины в семестре з.е. /час: 3 / 108

Форма промежуточной аттестации: Зачет

	Виды занятий	Объем контактной работы		
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
6	0	6	96	16

Лекционные занятия (6ч.)

- 1. Теоретическая механика как инструмент решения задач профессиональной деятельности. Общие положения. Необходимые для изучения дисциплины естественнонаучные и общеинженерные знания, методы математического анализа и моделирования. {беседа} (0,5ч.)[1,5]
- 2. Система сходящихся сил(0,5ч.)[1,5]
- 3. Система пар сил. Понятие момента силы(0,5ч.)[1,5]
- 4. Произвольная система сил. Реакции связей.(0,5ч.)[1,5]
- 5. Равновесие с учетом сил трения(0,5ч.)[1,5]
- 6. Центр тяжести твердого тела(0,5ч.)[1,5]
- 7. Кинематика точки(0,5ч.)[1,5]
- 8. Кинематика поступательного и вращательного движения твердого тела(0,5ч.)[1,5]
- 9. Плоское движение твердого тела(1ч.)[1,5]
- 10. Моделирование сложное движение(1ч.)[1,5]

Практические занятия (6ч.)

- 1. Решение задач. Сходящаяся система сил(1ч.)[6]
- 2. Решение задач. Произвольная система сил(1ч.)[6]
- 3. Решение задач. Определение центра тяжести(1ч.)[6]
- 4. Решение задач. Кинематика точки(1ч.)[6]
- 5. Решение задач Поступательное и вращательное движение твердого тела(1ч.)[6]
- 6. Решение задач Плоское движение твердого тела {работа в малых группах} (1ч.)[6]

Самостоятельная работа (96ч.)

- 1. Подготовка к текущим занятиям, самостоятельное изучение материала(84ч.)[1,5,6,7,8,9,10]
- 2. Выполнение контрольной работы(8ч.)[1,2,4,7,8,9,10]
- 3. Подготовка к зачету(4ч.)[1,5,7,8,9,10]

Семестр: 4

Объем дисциплины в семестре з.е. /час: 3 / 108 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные	Практические	Самостоятельная	обучающегося с преподавателем

	работы	занятия	работа	(7700)
6	0	6	96	(4ac)

Лекционные занятия (6ч.)

- 1. Введение в динамику. Динамика точки.Применяемые методы математического анализа и моделирования.(0,5ч.)[1,5]
- 2. Общие теоремы динамики точки(0,5ч.)[1,5]
- 3. Динамика колебаний(0,5ч.)[1,5]
- 4. Сложное движение материальной точки(0,5ч.)[1,5]
- 5. Принцип Даламбера для материальной точки(0,5ч.)[1,5]
- 6. Динамика твердого тела и механической системы(0,5ч.)[1,5]
- 7. Основные теоремы динамики твердого тела и механической системы(0,5ч.) [1,5]
- 8. Кинетический момент механической системы(0,5ч.)[1,5]
- 9. Потенциальная энергия(0,5ч.)[1,5]
- 10. Принцип Даламбера для механической системы(0,5ч.)[1,5]
- 11. Основы аналитической механики(0,5ч.)[1,5]
- 12. Теория удара(0,5ч.)[1,5]

Практические занятия (6ч.)

- 1. Решение задач. Динамика точки.(1ч.)[6]
- 2. Решение задач. Общие теоремы динамики точки(1ч.)[6]
- 3. Решение задач. Колебательные процессы.(0,5ч.)[6]
- 4. Динамика твердого тела и механической системы. Решение задач с применением естественнонаучных и общеинженерных знаний.(1ч.)[6]
- 5. Решение задач. Основные теоремы динамики твердого тела и механической системы(1ч.)[6]
- 6. Решение задач. Механическая энергия. Принцип Даламбера для механической системы {работа в малых группах} (0,5ч.)[6]
- 7. Решение задач. Основы аналитической механики(0,5ч.)[6]
- 8. Решение задач. Основы теории удара(0,5ч.)[6]

Самостоятельная работа (96ч.)

- 1. Подготовка к текущим занятиям, самостоятельное изучение материала(79ч.)[1,5,6,7,8,9,10]
- 2. Выполнение контрольной работы(8ч.)[1,3,4,5,7,8,9,10]
- 3. Подготовка к экзамену(9ч.)[1,5,7,8,9,10]
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный

доступ к электронно-библиотечным системам, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Демидов, А.С. Краткий лекционный курс теоретической механики: [текст] Учебное пособие для студентов всех форм обучения специальностей: "АТ", "АиАХ", "СХМ", "ТМ", "ЛП", "МАПП", "ПГС"./ А.С. Демидов, Н.А. Кулагина. Рубцовск: РИО, 2008. 115 с. -90 экз.
 - 2. Демидов, А.С.

Теоретическая механика: [текст]учеб. пособие для студентов заоч. формы обучения техн. специальностей, Ч.1/ А.С. Демидов. - Рубцовск: РИО, 2012. - 128 с. -19 экз.

3. Демидов, А.С.

Теоретическая механика: [текст]:учеб. пособие для студентов заоч. формы обучения техн. специальностей, Ч.2/ А.С. Демидов, Н.А. Кулагина. - Рубцовск: РИО, 2008. - 90 с - 87 экз.

4. Курсов, И.В. Теоретическая механика: методические рекомендации по выполнению самостоятельной работы по дисциплине «Теоретическая механика» для студентов направления подготовки «Наземные транспортно-технологические комплексы»/ И.В. Курсов; Рубцовский индустриальный институт.- Рубцовск: РИИ, 2021. - 11 с. URL: https://edu.rubinst.ru/resources/books/Kursov_I.V._Teoreticheskaya_mekhanika_dlya_NTTK_(sam_rabota)_2021.pdf (дата обращения 01.11.2021)

6. Перечень учебной литературы

- 6.1. Основная литература
- 5. Козинцева, С. В. Теоретическая механика : учебное пособие / С. В. Козинцева, М. Н. Сусин. 2-е изд. Саратов : Ай Пи Эр Медиа, 2019. 153 с. ISBN 978-5-4486-0442-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/79816.html (дата обращения: 27.02.2022). Режим доступа: для авторизир. пользователей
- 6. Сборник коротких задач по теоретической механике: Учеб. пособие [текст]/ Ред. О.Э. Кепе. СПб.: Лань, 2008. 368 с. 200 шт.

6.2. Дополнительная литература

- 7. Теоретическая механика. Сквозные задачи, алгоритмы решения задач с комментариями, содержанием теории и примерами, математика : учебное пособие / А. Э. Джашитов, Н. В. Бекренев, В. О. Горбачев [и др.]. Саратов : Саратовский государственный технический университет имени Ю.А. Гагарина, ЭБС АСВ, 2020. 259 с. ISBN 978-5-7433-3377-6. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/108712.html (дата обращения: 27.02.2022). Режим доступа: для авторизир. пользователей
- 8. Теоретическая механика в примерах и задачах. Статика : учебное пособие / Л. П. Назарова, А. Н. Мелконян, Е. В. Фалькова, Е. Н. Фисенко ; под

редакцией Н. А. Смирнова. — Красноярск : Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева, 2020. — 174 с. — ISBN 978-5-86433-738-7. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/107224.html (дата обращения: 27.02.2022). — Режим доступа: для авторизир. пользователей

- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 9. http://www.teoretmeh.ru/
 - 10. https://bcoreanda.com/
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные				
	справочные системы				
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным				
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные				
	интернет-ресурсы (http://Window.edu.ru)				
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к				
	фондам российских библиотек. Содержит коллекции оцифрованных документов				
	(как открытого доступа, так и ограниченных авторским правом), а также каталог				
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)				

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы учебные аудитории для проведения учебных занятий помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».

ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Теоретическая механика»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
		Комплект
ОПК-1: Способен применять		контролирующих
естественнонаучные и общеинженерные		материалов для
знания, методы математического анализа и	Зачет; экзамен	зачета; комплект
моделирования в профессиональной		контролирующих
деятельности		материалов для
		экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

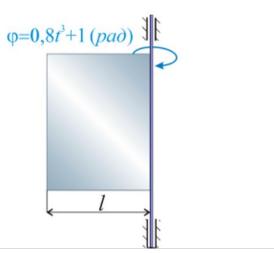
Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Теоретическая механика».

При оценивании сформированности компетенций по дисциплине «Теоретическая механика» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал	75-100	Отлично
(основной и дополнительный), системно		
и грамотно излагает его, осуществляет		
полное и правильное выполнение		
заданий в соответствии с индикаторами		
достижения компетенций, способен		
ответить на дополнительные вопросы.		
Студент освоил изучаемый материал,	50-74	Хорошо
осуществляет выполнение заданий в		
соответствии с индикаторами		
достижения компетенций с		
непринципиальными ошибками.		
Студент демонстрирует освоение только	25-49	<i>Удовлетворительно</i>
основного материала, при выполнении		
заданий в соответствии с индикаторами		
достижения компетенций допускает		
отдельные ошибки, не способен		
систематизировать материал и делать		
выводы.		
Студент не освоил основное содержание	<25	Неудовлетворительно
изучаемого материала, задания в		

соответствии с индикаторами	
достижения компетенций не выполнены	
или выполнены неверно.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами


1.Задания на применение математического аппарата, методов математического анализа для решения задач профессиональной деятельности

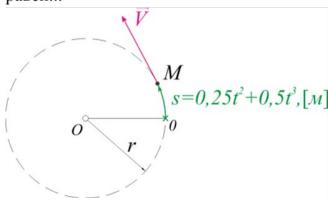
Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Применяет математический аппарат,
общеинженерные знания, методы математического	методы математического анализа и
анализа и моделирования в профессиональной	моделирования для решения задач
деятельности	профессиональной деятельности

1 Используя навыки дифференциального исчисления решить задачу (ОПК-1.1).

Однородная прямоугольная пластина жестко связана с вертикальным валом, вращающимся согласно закону ϕ =0,8t³+1 (pad). Масса пластины 12 κz и размер l=0,5M. Вал считать тонким однородным стержнем.

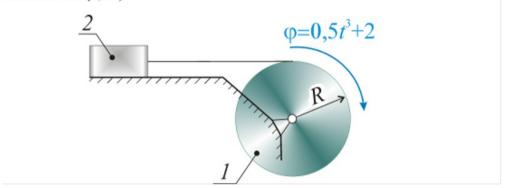
Главный момент сил инерции данной системы в момент времени t=1c составляет ... $(\kappa c^* m^2/c^2)$

2 Используя навыки дифференциального исчисления решить задачу (ОПК-1.1).


. Движение точки М задано параметрическими уравнениями:

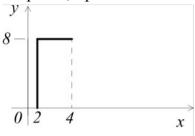
$$x = 2t^2 + 5$$

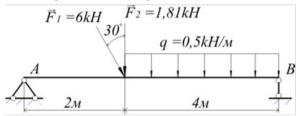
$$y = 0.5t^3 - 10t$$


Определить модуль ускорения точки M в момент времени t=1 c.

3 Используя навыки дифференциального исчисления решить задачу (ОПК-1.1). Материальная точка M движется по окружности радиуса r=1м по закону s=f(t). Модуль нормального ускорения точки M в момент времени t=1с равен...

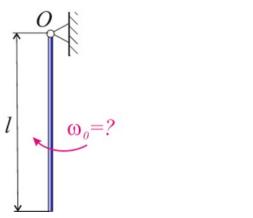
4 Используя навыки дифференциального исчисления решить задачу (ОПК-1.1).


Шкив I массой m_1 =4 $\kappa \epsilon$ и радиусом R=0,5M, вращаясь по закону ϕ =0,5 ℓ 3+2 (pad) посредством гибкой связи перемещает груз 2 массой m_2 =2 $\kappa \epsilon$ по горизонтальной гладкой поверхности. Шкив можно считать тонким однородным диском. Кинетическая энергия механической системы в момент времени t=2 ϵ составит... (\mathcal{J} \mathcal{H} \mathcal{H})


2.Задания на применение естественнонаучных и(или) общеинженерных знаний для решения задач профессиональной деятельности

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	ОПК-1.2 Применяет естественнонаучные и/или
общеинженерные знания, методы математического	общеинженерные знания для решения задач
анализа и моделирования в профессиональной	профессиональной деятельности
деятельности	

1 Применяя естественнонаучные и/или общеинженерные знания решите задачу (ОПК-1.2). Координата х центра тяжести Г-образного плоского стержня, представленного на рисунке, равна...


2 Применяя естественнонаучные и/или общеинженерные знания решите задачу (ОПК-1.2). Модуль полной реакции опоры А для данной расчётной схемы, составляет, кН:

- 3 Применяя естественнонаучные и/или общеинженерные знания решите задачу (ОПК-1.2). Материальная точка М массой 0,09 тонны движется по горизонтальной прямой под действием силы F=270t которая направлена по той же прямой. В начальный момент времени скорость точки была равна 1,5 м/с. В момент времени t=1c скорость точки составляет величину, м/с...
- 4 Применяя естественнонаучные и/или общеинженерные знания решите задачу (ОПК-1.2).

Однородный стержень длиной l=1м, вследствие сообщенной ему первоначально угловой скорости ω_0 может повернуться относительно шарнира O на четверть оборота. Принять $g = 10 \, \text{M/c}^2$.

В таком случае, начальная угловая скорость ω_0 должна составлять ... (c^{-1})

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.